Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision Making in Engineering
نویسندگان
چکیده
Intuitionistic fuzzy set, which can be represented using the triangular intuitionistic fuzzy number (TIFN), is a more generalized platform for expressing imprecise, incomplete and inconsistent information when solving multi-criteria decision-making problems, as well as for reflecting the evaluation information exactly in different dimensions. In this paper, the TIFN has been applied for solving some multi-criteria decision-making problems by developing a new triangular intuitionistic fuzzy geometric aggregation operator, that is the generalized triangular intuitionistic fuzzy ordered weighted geometric averaging (GTIFOWGA) operator, and defining some triangular intuitionistic fuzzy geometric aggregation operators including the triangular intuitionistic fuzzy weighted geometric averaging (TIFWGA) operator, the ordered weighted geometric averaging (TIFOWGA) operator and the hybrid geometric averaging (TIFHWGA) operator. Based on these operators, a new approach for solving multicriteria decision-making problems when the weight information is fixed has been proposed. Finally, the proposed method has been compared with some similar existing computational approaches by virtue of a numerical example to verify its feasibility and rationality.
منابع مشابه
A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management
Triangular intuitionistic fuzzy number (TIFN) is a more generalized platform for expressing imprecise, incomplete, and inconsistent information when solving multi-criteria decision-making problems, as well as for expressing and reflecting the evaluation information in several dimensions. In this paper, the TIFN has been applied for solving multi-criteria decision-making (MCDM) problems, first, ...
متن کاملA NOVEL TRIANGULAR INTERVAL TYPE-2 INTUITIONISTIC FUZZY SETS AND THEIR AGGREGATION OPERATORS
The objective of this work is to present a triangular interval type-2 (TIT2) intuitionistic fuzzy sets and their corresponding aggregation operators, namely, TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid averaging based on Frank norm operation laws. Furthermore, based on these operators, an approach to mul...
متن کاملGroup Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making
Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...
متن کاملTriangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کاملThe induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making
In this paper, we present the induced generalized intuitionistic fuzzy ordered weighted averaging (IGIFOWA) operator. It is a new aggregation operator that generalized the IFOWA operator, including all the characteristics of both the generalized IFOWA and the induced IFOWA operators. It provides a very general formulation that includes as special cases a wide range of aggregation operators for ...
متن کامل